


FlowCommand is focused on reducing customer operating 

costs through the market’s most advanced technology to 

measure fluid rates. Using a combination of machine 

learning, satellite telemetry, and proprietary hardware – 

FlowCommand systems allow oil and gas operators to 

track fluid behavior inside of any pipe. The unique 

combination of these features allow us to make a flow 

sensor that anyone can install with five minutes and a 

screwdriver.

The measurement process is not driven by a sensor that 

measures a single variable and performs basic physics 

equations. It is instead a multistep process that collects 

incredibly large amounts of acoustic data and transmits 

that data to several layers of machine learning algorithms 

that have been trained on billions of data points. By 

leveraging this dataset, we can determine the flowrate 

wherever a FlowCommand transducer is installed on a 

pipe.

An evolution in 
sensor engineering



The precise engineering and computer science driving this solution involves a  

multi-stage framework. There are three steps involved in our measurement 

process, each broken into smaller steps in the below outline:
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FlowCommand’s transducer emits ultrasonic waves into 

the pipe. Those waves are then reflected off microscopic 

particles and bubbles in the fluid. Millions of these data 

points are recorded every second and are sent to our 

computing module to transmit to our software.

As with all modern machine learning and artificial 

intelligence techniques, the FlowCommand system 

extracts many important variables from the ultrasonic 

waves that describe the shape, size, and movement of the 

waves. In standard machine learning terms, these 

variables are called features.

There are far too many features to list—many of them are 

protected under trade secret, while others are simply 

impossible to describe in plain english terms since they 

were identified by a machine learning algorithm itself. 

Acquiring raw 
ultrasonic data



To help exemplify our solution’s measurement process and 

algorithms, to the right is a representation of the statistical 

analyses our software automatically performs on properties 

of the ultrasonic waves emitted and received by the 

transducer. These properties are a small component of the 

inputs into FlowCommand Software.

Approximately one million waves are sent and received 

every second; thousands of variables are captured on each 

wave as well aggregated sets of waves. 

Example:
Wave analysis



All of the data related to the wave signal reflections is compressed and encrypted by our 

processor on the unit in the field. This encrypted data is then transmitted via a technology 

called SBD (Short Burst Data) to a private non-geosynchronous-satellite-network.

This data is automatically downloaded by FlowCommand servers and processed by a piece 

of FlowCommand software called an Ingestion Engine that lives on the cloud.  This means 

that the Customer has access to this information from any device with an internet 

connection. This Ingestion Engine decompresses the data and breaks it into relevant 

pieces to be processed by our algorithms.-------------------------------------  …………………...

Additionally, all FlowCommand units are equipped with two way communication abilities. 

This allows FlowCommand software to automatically send transmissions with updated 

programming or command functions to units in the field.

Seamless data 
transmission



Once the FlowCommand data model has received the 

inputs from the ingestion engine, the model then 

automatically examines the data to determine which class 

of algorithm to implement. The selection process is based 

on the evaluation of thousands of data points, compared 

against-a-library-of-billions. 

The FlowCommand machine learning model does not rely 

on any particular features; rather, it performs a variety of 

pattern recognition tasks that seek to understand the 

thousands of features, across millions of data points, in 

their totality to determine a flow rate. The key factor in 

giving our algorithm such accurate performance is that 

every sensor is constantly communicating with our library 

of data points and comparing what it hears with every piece 

of data that every other sensor has ever collected. 

The reason for using this level of complexity is that most 

flow regimes in the oilfield are complex. They often have 

turbulence, varying fluid makeups, and other complexities 

that require evaluation techniques that are far beyond the 

typical physics model or single variable evaluation.  

Measurement 
powered by AI

linear = linear_model.LinearRegression()
trainX = 
np.asarray(df.X[20:len(df.X)]).reshape(-1, 1)
trainY = 
np.asarray(df.Y[20:len(df.Y)]).reshape(-1, 1)
testX = np.asarray(df.X[:20]).reshape(-1, 1)
testY = np.asarray(df.Y[:20]).reshape(-1, 1)
linear.fit(trainX, trainY)
linear.score(trainX, trainY)
print('Coefficient: \n', linear.coef_)
print('Intercept: \n', linear.intercept_)
print('R² Value: \n', linear.score(trainX, 
trainY))
predicted = linear.predict(testX)

logistic = LogisticRegression()
X = (np.asarray(df.X)).reshape(-1, 1)
Y = (np.asarray(df.Y)).ravel()
logistic.fit(X, Y)
logistic.score(X, Y)
print('Coefficient: \n', logistic.coef_)
print('Intercept: \n', logistic.intercept_)
print('R² Value: \n', logistic.score(X, Y))

from sklearn.cross_validation import 
train_test_split
decision = 
tree.DecisionTreeClassifier(criterion='gini')
X = df.values[:, 0:4]
Y = df.values[:, 4]
trainX, testX, trainY, testY = 
train_test_split( X, Y, test_size = 0.3)
decision.fit(trainX, trainY)
print('Accuracy: \n', decision.score(testX, 
testY))

from sklearn.cross_validation import 
train_test_split
support = svm.SVC()
X = df.values[:, 0:2]
Y = df.values[:, 2]
trainX, testX, trainY, testY = 
train_test_split( X, Y, test_size = 0.3)
support.fit(trainX, trainY)
print('Accuracy: \n', support.score(testX, 
testY))
pred = support.predict(testX)

from sklearn.cross_validation import 
train_test_split
neighbors = 
KNeighborsClassifier(n_neighbors=5)
X = df.values[:, 0:2]
Y = df.values[:, 2]
trainX, testX, trainY, testY = 
train_test_split( X, Y, test_size = 0.3)
neighbors.fit(trainX, trainY)
print('Accuracy: \n', neighbors.score(testX, 
testY))
pred = neighbors.predict(testX)

from sklearn.cross_validation import 
train_test_split
decision = 
tree.DecisionTreeClassifier(criterion='gini
')
X = df.values[:, 0:4]
Y = df.values[:, 4]
trainX, testX, trainY, testY = 
train_test_split( X, Y, test_size = 0.3)
decision.fit(trainX, trainY)
print('Accuracy: \n', decision.score(testX, 
testY))

from sklearn.cross_validation import 
train_test_split
support = svm.SVC()
X = df.values[:, 0:2]
Y = df.values[:, 2]
trainX, testX, trainY, testY = 
train_test_split( X, Y, test_size = 0.3)
support.fit(trainX, trainY)
print('Accuracy: \n', support.score(testX, 
testY))
pred = support.predict(testX)

from sklearn.cross_validation import 
train_test_split
neighbors = 
KNeighborsClassifier(n_neighbors=5)
X = df.values[:, 0:2]
Y = df.values[:, 2]
trainX, testX, trainY, testY = 
train_test_split( X, Y, test_size = 0.3)
neighbors.fit(trainX, trainY)
print('Accuracy: \n', 
neighbors.score(testX, testY))
pred = neighbors.predict(testX)

from sklearn.cross_validation import 
train_test_split
forest = RandomForestClassifier()
X = df.values[:, 0:4]
Y = df.values[:, 4]
trainX, testX, trainY, testY = 
train_test_split( X, Y, test_size = 0.3)
forest.fit(trainX, trainY)
print('Accuracy: \n', forest.score(testX, 
testY))
pred = forest.predict(testX)

from sklearn import decomposition
pca = decomposition.PCA()
fa = decomposition.FactorAnalysis()
X = df.values[:, 0:4]
Y = df.values[:, 4]
train, test = train_test_split(X,test_size 
= 0.3)
train_reduced = pca.fit_transform(train)
test_reduced = pca.transform(test)
pca.n_components_
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