

FlowCommand is focused on reducing customer operating

costs through the market’s most advanced technology to

measure fluid rates. Using a combination of machine

learning, satellite telemetry, and proprietary hardware –

FlowCommand systems allow oil and gas operators to

track fluid behavior inside of any pipe. The unique

combination of these features allow us to make a flow

sensor that anyone can install with five minutes and a

screwdriver.

The measurement process is not driven by a sensor that

measures a single variable and performs basic physics

equations. It is instead a multistep process that collects

incredibly large amounts of acoustic data and transmits

that data to several layers of machine learning algorithms

that have been trained on billions of data points. By

leveraging this dataset, we can determine the flowrate

wherever a FlowCommand transducer is installed on a

pipe.

An evolution in
sensor engineering

The precise engineering and computer science driving this solution involves a

multi-stage framework. There are three steps involved in our measurement

process, each broken into smaller steps in the below outline:

Sensors that measure
cooperatively

Data-Acquisition

Transducer-sends

waves through pipe to

reflect off of fluid

Sends-wave-reflection

data to CPU

Data Transmission

Sends-to-satellite

network

Sends to software

Data Process

Processed by model

Displays to customer

FlowCommand’s transducer emits ultrasonic waves into

the pipe. Those waves are then reflected off microscopic

particles and bubbles in the fluid. Millions of these data

points are recorded every second and are sent to our

computing module to transmit to our software.

As with all modern machine learning and artificial

intelligence techniques, the FlowCommand system

extracts many important variables from the ultrasonic

waves that describe the shape, size, and movement of the

waves. In standard machine learning terms, these

variables are called features.

There are far too many features to list—many of them are

protected under trade secret, while others are simply

impossible to describe in plain english terms since they

were identified by a machine learning algorithm itself.

Acquiring raw
ultrasonic data

To help exemplify our solution’s measurement process and

algorithms, to the right is a representation of the statistical

analyses our software automatically performs on properties

of the ultrasonic waves emitted and received by the

transducer. These properties are a small component of the

inputs into FlowCommand Software.

Approximately one million waves are sent and received

every second; thousands of variables are captured on each

wave as well aggregated sets of waves.

Example:
Wave analysis

All of the data related to the wave signal reflections is compressed and encrypted by our

processor on the unit in the field. This encrypted data is then transmitted via a technology

called SBD (Short Burst Data) to a private non-geosynchronous-satellite-network.

This data is automatically downloaded by FlowCommand servers and processed by a piece

of FlowCommand software called an Ingestion Engine that lives on the cloud. This means

that the Customer has access to this information from any device with an internet

connection. This Ingestion Engine decompresses the data and breaks it into relevant

pieces to be processed by our algorithms.------------------------------------- …………………...

Additionally, all FlowCommand units are equipped with two way communication abilities.

This allows FlowCommand software to automatically send transmissions with updated

programming or command functions to units in the field.

Seamless data
transmission

Once the FlowCommand data model has received the

inputs from the ingestion engine, the model then

automatically examines the data to determine which class

of algorithm to implement. The selection process is based

on the evaluation of thousands of data points, compared

against-a-library-of-billions.

The FlowCommand machine learning model does not rely

on any particular features; rather, it performs a variety of

pattern recognition tasks that seek to understand the

thousands of features, across millions of data points, in

their totality to determine a flow rate. The key factor in

giving our algorithm such accurate performance is that

every sensor is constantly communicating with our library

of data points and comparing what it hears with every piece

of data that every other sensor has ever collected.

The reason for using this level of complexity is that most

flow regimes in the oilfield are complex. They often have

turbulence, varying fluid makeups, and other complexities

that require evaluation techniques that are far beyond the

typical physics model or single variable evaluation.

Measurement
powered by AI

linear = linear_model.LinearRegression()
trainX =
np.asarray(df.X[20:len(df.X)]).reshape(-1, 1)
trainY =
np.asarray(df.Y[20:len(df.Y)]).reshape(-1, 1)
testX = np.asarray(df.X[:20]).reshape(-1, 1)
testY = np.asarray(df.Y[:20]).reshape(-1, 1)
linear.fit(trainX, trainY)
linear.score(trainX, trainY)
print('Coefficient: \n', linear.coef_)
print('Intercept: \n', linear.intercept_)
print('R² Value: \n', linear.score(trainX,
trainY))
predicted = linear.predict(testX)

logistic = LogisticRegression()
X = (np.asarray(df.X)).reshape(-1, 1)
Y = (np.asarray(df.Y)).ravel()
logistic.fit(X, Y)
logistic.score(X, Y)
print('Coefficient: \n', logistic.coef_)
print('Intercept: \n', logistic.intercept_)
print('R² Value: \n', logistic.score(X, Y))

from sklearn.cross_validation import
train_test_split
decision =
tree.DecisionTreeClassifier(criterion='gini')
X = df.values[:, 0:4]
Y = df.values[:, 4]
trainX, testX, trainY, testY =
train_test_split(X, Y, test_size = 0.3)
decision.fit(trainX, trainY)
print('Accuracy: \n', decision.score(testX,
testY))

from sklearn.cross_validation import
train_test_split
support = svm.SVC()
X = df.values[:, 0:2]
Y = df.values[:, 2]
trainX, testX, trainY, testY =
train_test_split(X, Y, test_size = 0.3)
support.fit(trainX, trainY)
print('Accuracy: \n', support.score(testX,
testY))
pred = support.predict(testX)

from sklearn.cross_validation import
train_test_split
neighbors =
KNeighborsClassifier(n_neighbors=5)
X = df.values[:, 0:2]
Y = df.values[:, 2]
trainX, testX, trainY, testY =
train_test_split(X, Y, test_size = 0.3)
neighbors.fit(trainX, trainY)
print('Accuracy: \n', neighbors.score(testX,
testY))
pred = neighbors.predict(testX)

from sklearn.cross_validation import
train_test_split
decision =
tree.DecisionTreeClassifier(criterion='gini
')
X = df.values[:, 0:4]
Y = df.values[:, 4]
trainX, testX, trainY, testY =
train_test_split(X, Y, test_size = 0.3)
decision.fit(trainX, trainY)
print('Accuracy: \n', decision.score(testX,
testY))

from sklearn.cross_validation import
train_test_split
support = svm.SVC()
X = df.values[:, 0:2]
Y = df.values[:, 2]
trainX, testX, trainY, testY =
train_test_split(X, Y, test_size = 0.3)
support.fit(trainX, trainY)
print('Accuracy: \n', support.score(testX,
testY))
pred = support.predict(testX)

from sklearn.cross_validation import
train_test_split
neighbors =
KNeighborsClassifier(n_neighbors=5)
X = df.values[:, 0:2]
Y = df.values[:, 2]
trainX, testX, trainY, testY =
train_test_split(X, Y, test_size = 0.3)
neighbors.fit(trainX, trainY)
print('Accuracy: \n',
neighbors.score(testX, testY))
pred = neighbors.predict(testX)

from sklearn.cross_validation import
train_test_split
forest = RandomForestClassifier()
X = df.values[:, 0:4]
Y = df.values[:, 4]
trainX, testX, trainY, testY =
train_test_split(X, Y, test_size = 0.3)
forest.fit(trainX, trainY)
print('Accuracy: \n', forest.score(testX,
testY))
pred = forest.predict(testX)

from sklearn import decomposition
pca = decomposition.PCA()
fa = decomposition.FactorAnalysis()
X = df.values[:, 0:4]
Y = df.values[:, 4]
train, test = train_test_split(X,test_size
= 0.3)
train_reduced = pca.fit_transform(train)
test_reduced = pca.transform(test)
pca.n_components_

© 2019 FlowCommand Inc. All Rights Reserved.

Specifications are subject to change without notice. FlowCommand is a
registered trademark of FlowCommand Inc. Other company or product
names mentioned in this document may be trademarks or registered
trademarks of their respective companies, which are not affiliated with
FlowCommand Inc.

The contents of this publication are presented for information purposes
only, and while effort has been made to ensure their accuracy, they are
not to be construed as warranties or guarantees, expressed or implied,
regarding the products or services described herein or their use or
applicability. Standard Terms and Conditions of Sale can be issued by
contacting FlowCommand Inc. We reserve the right to modify or
improve the designs and specifications of our products at any time
without notice. FlowCommand Inc accepts no responsibility for any
errors that may appear in this publication.

FlowCommand Inc.
10606 Hempstead Rd. Suite 112

Houston, TX 77092

T +1 713 714 5547

team@flowcommand.com

www.flowcommand.com

mailto:team@flowcommand.com
http://www.flowcommand.com/ultraflow.html

